Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38084807

RESUMO

We extend some of the well-established self-interaction correction (SIC) schemes of density-functional theory-the Perdew-Zunger SIC and the average-density SIC-to the case of systems with noncollinear magnetism. Our proposed SIC schemes are tested on a set of molecules and metallic clusters in combination with the widely used local spin-density approximation. As expected from the collinear SIC, we show that the averaged-density SIC works well for improving ionization energies but fails to improve more subtle quantities like the dipole moments of polar molecules. We investigate the exchange-correlation magnetic field produced by our extension of the Perdew-Zunger SIC, showing that it is not aligned with the local total magnetization, thus producing an exchange-correlation torque.

2.
J Chem Phys ; 153(2): 024117, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668924

RESUMO

First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include "heavy-duty" ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.

3.
J Chem Phys ; 152(12): 124119, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241132

RESUMO

Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).

4.
J Phys Condens Matter ; 31(33): 334001, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31071706

RESUMO

Within recent developments of density functional theory, its numerical implementation and of the superconducting density functional theory is nowadays possible to predict the superconducting critical temperature, [Formula: see text], with sufficient accuracy to anticipate the experimental verification. In this paper we present an analytical derivation of the isotope coefficient within the superconducting density functional theory. We calculate the partial derivative of [Formula: see text] with respect to atomic masses. We verified the final expression by means of numerical calculations of isotope coefficient in monatomic superconductors (Pb) as well as polyatomic superconductors (CaC6). The results confirm the validity of the analytical derivation with respect to the finite difference methods, with considerable improvement in terms of computational time and calculation accuracy. Once the critical temperature is calculated (at the reference mass(es)), various isotope exponents can be simply obtained in the same run. In addition, we provide the expression of interesting quantities like partial derivatives of the deformation potential, phonon frequencies and eigenvectors with respect to atomic masses, which can be useful for other derivations and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...